CSE 114A

Introduction to Functional
Programming

Higher-Order Functions

Based on course materials developed by Nadia Polikarpova and Owen Arden

Plan for this week

Last week:

« user-defined data types
o and how to manipulate them using pattern
matching and recursion
e how to make recursive functions more efficient with tail
recursion

This week:
o code reuse with higher-order functions (HOFs)

« some useful HOFs: map, filter, and fold

Recursion is good

e Recursive code mirrors recursive data

o Base constructor -> Base case
o Inductive constructor -> Inductive case
(with recursive call)

e But it can get kinda repetitive!

Example: evens

Let’s write a function evens:

-- evens [] ==> []

-- evens [1,2,3,4] ==> [2,4]
evens :: [Int] -> [Int]
evens [] = ...

evens (X:xs) = ...

Example: four-letter words

Let’s write a function fourChars:

-- fourChars [] ==> []

-- fourChars ["1", "must"”, "do", "workR"] ==> ["must", "work"]
fourChars :: [String] -> [String]

fourChars [] = ...

fourChars (x:xs) = ...

Yikes, Most Code is the Same!

foo [] =[]
foo (x:xs)
| x mod 2 == = x : foo xs
| otherwise = foo Xxs
foo [] =[]
foo (x:xs)
| length x == 4 = x : foo Xs
| otherwise = foo xs

Only difference is condition
e Xx mod 2 == Ovslength x == 4

Moral of the day

D.R.Y. Don’t Repeat Yourself!

Can we

e reuse the general pattern and
e substitute in the custom condition?

HOFs to the rescue!

General Pattern

e expressed as a higher-order function

o takes customizable operations as arguments
Specific Operation

e passed in as an argument to the HOF

The “filter” pattern

evens [] =[] fourChars [] = [l
evens (Xx:xs) fourChars (x:xs)
| x mod 2 == 0 = Xx : evens Xs | length x == 4 = x : fourChars xs
| otherwise = evens Xs | otherwise = fourChars xs
filter f [] = [l
filter f (x:xs)
| f x = x : filter f xs
| otherwise = filter f xs

Use the filter pattern
to avoid duplicating code!

The “filter” pattern

General Pattern

« HOF filter
e Recursively traverse list and pick out elements that satisfy a predicate

Specific Operation

e Predicates isEven and isFour

filter f [] = []
filter f (x:xs)
| f x = x ¢ filter f xs
| otherwise = filter f xs
evens = filter isEven fourChars = filter isFour
where where

isEven x = x “mod’ == 0 isFour x = length x == 4

Let’s talk about types

-- evens [1,2,3,4] ==> [2,4]
evens :: [Int] -> [Int]
evens xs = filter isEven xs

where
isEven :: Int -> Bool
isEven x = X mod 2 == 0

filter :: ???

11

Let’s talk about types

-- evens [1,2,3,4] ==> [2,4]
evens :: [Int] -> [Int]
evens xs = filter isEven xs

where
isEven :: Int -> Bool
isEven x = X mod 2 == 0

filter :: ???

12

Let’s talk about types

-- fourChars ["1", "must”, "do", "workR"] ==> ["must", "work"]

fourChars :: [String] -> [String]
fourChars xs = filter isFour xs

where
isFour :: String -> Bool
isFour x = 1length x == 4
filter :: ?2?2?

13

Let’s talk about types

Uh oh! So what’s the type of filter?
filter :: (Int -> Bool) -> [Int] -> [Int] -- 2?27
filter :: (String -> Bool) -> [String] -> [String] -- ???

e |t does not care what the list elements are
o as long as the predicate can handle them

o Filter type is polymorphic/generic in the type of list elems

-- For any type a

- - 1f you give me a predicate on a
- - and a List of a,

- - I'LL give you back a List of a
filter :: (a -> Bool) -> [a] -> [a]

14

Example: all caps

Lets write a function shout:

-- shout []

-- shout ['h','e',"'L","'Ll"', " '0"]
shout :: [Char] -> [Char]
shout [] = ...

shout (x:xs) = ...

15

Example: squares

Lets write a function squares:

-- squares [] => []

-- squares [1,2,3,4] ==> [1,4,9,16]
squares :: [Int] -> [Int]

squares [] = ...

squares (X:xs) = ...

16

Yikes, Most Code is the Same!

Lets rename the functions to f00:

-- Shout

foo [] []

foo (x:xs) = toUpper x : foo xs

-- squares
foo []
foo (x:xs)

[]

(x * x) : foo xs

Lets refactor into the common pattern

pattern = ...

17

The “map” pattern

shout []
shout (x:xs)

[]

(x*x)

[] squares []
toUpper x : shout xs squares (x:xs)

.+ Squares Xs

[]

f x i map f xs

map f []
map f (x:xs)

The map Pattern

General Pattern

« HOF map

« Apply a transformation f to each element of a list
Specific Operations

« Transformations toUpper and \x -> X * X

18

The “map” pattern

map f [] =[]
map ¥ (x:xs) = f x : map f xs

Lets refactor shout and squares

shout = map ...
squares = map ...
map f [] []

map f (x:xs) = f x : map f xs

shout = map (\x -> toUpper x) squares = map (\x —> Xxx*x)

19

QUIZ

What is the type of map? *

map f [] =[]
map f (x:xs) = f x : map f xs

(A) (Char -> Char) -> [Char] -> [Char]
(B) (Int -> Int) -> [Int] -> [Int]

(C) (a -> a) -> [a] -> [a]

(D) (@ -> b) -> [a] -> [b]

(E) (@ -> b) -> [c] -> [d]

=]
&
[m]:%

http://tiny.cc/cse116-map-ind

20

QUIZ

What is the type of map? *

map f [] =[]
map f (x:xs) = f x : map f xs

(A) (Char -> Char) -> [Char] -> [Char]
(B) (Int -> Int) -> [Int] -> [Int]

(C) (a -> a) -> [a] -> [a]

(D) (@ -> b) -> [a] -> [b]

(E) (@ -> b) -> [c] -> [d]

[m] 7% [m]
o
[=] £

http://tiny.cc/cse116-map-grp

21

The “map” pattern

-- For any types a and b’

- - 1f you give me a transformation from "a to b
- - and a List of a s,

- - I'LL give you back a lList of b's

map :: (a -> b) -> [a] -> [b]

Type says it all!

e The only meaningful thing a function of this type can do is apply its first
argument to elements of the list (Hoogle it!)

Things to try at home:

« canyou write a functionmap’ :: (a -> b) -> [a] -> [b] whose
behavior is different from map?

« canyou write a functionmap' :: (a -> b) -> [a] -> [b] such

that map' f Xs returns a list whose elements are not in map f Xs?
22

QUIZ

What is the value of quiz? *

map :: (@ -> b) -> [a] -> [b]

quiz = map (\(x, y) -> x +y) [1, 2, 3]

O 246
O ® 135
(O (C) Syntax Error

(O (D) Type Error

(O (E) None of the above

http://tiny.cc/cse116-quiz-ind

23

QUIZ

What is the value of quiz? *

map :: (@ -> b) -> [a] -> [b]

quiz = map (\(x, y) -> x +y) [1, 2, 3]

O 246
O ® 135
(O (C) Syntax Error

(O (D) Type Error

(O (E) None of the above

http://tiny.cc/cse116-quiz-grp

24

Don’t Repeat Yourself

Benefits of factoring code with HOFs:
e Reuse iteration pattern

o think in terms of standard patterns

o |ess to write

o easier to communicate

e Avoid bugs due to repetition

25

Recall: length of a list

- Llen [] ==> 0

- Llen ["carne", "asada"] ==> 2
len :: [a] -> Int
len [] 0
len (x:xs) = 1 + len xs

26

Recall: summing a list

-- sum []

==)> @

-- sum [1,2,3] ==> 6
sum :: [Int] -> Int

sum []
sum (X:Xs)

0
X + sum Xs

27

Example: string concatenation

Let’s write a function cat:

--cat [] ==>""

-- cat ["carne", "asada"”, "torta"”] ==> "carneasadatorta"
cat :: [String] -> String

cat [] = ...

cat (x:xs) = ...

Can you spot the pattern?

-- Llen
foo [] = 0
foo (x:xs) = 1 + foo xs

-- sum
foo [] = 0
foo (x:xs) = x + foo xs

-- cat
foo [] = ""

foo (x:xs) = x ++ foo xs

pattern = ...

29

The “fold-right” pattern

len []
len (x:xs)

0 Cat [] aun
X + sum xs || cat (x:xs) X ++ sum XS

sum []
+ len xs || sum (x:xs)

nn
[B~
nn
nn

foldr f b []
foldr f b (x:xs)

b
f x (foldr f b xs)

The foldr Pattern

General Pattern

e Recurse on tail
e Combine result with the head using some binary operation

30

The “fold-right” pattern

foldr £ b [] b
foldr £ b (x:xs) = £ x (foldr f b xs)

Let’s refactor sum, 1en and cat:

sum = foldr ...

cat foldr ...

len foldr ...

Factor the recursion out!

31

The “fold-right” pattern

foldr f b []
foldr f b (x:xs)

b
f x (foldr f b xs)

len = foldr (\x

n->1+n)0

sum = foldr (\Xx

n->Xx+n) 0

foldr (\x

cat

S => X ++ n) “”

You can write it more clearly as
sum = foldr (+) ©
cat = foldr (++) ""

32

The “fold-right” pattern

foldr f b []
foldr f b (x:xs)

b
f x (foldr f b xs)

len = foldr (\x

n->1+n)0

sum = foldr (\Xx

n->Xx+n) 0

foldr (\x

cat

S => X ++ n) “”

You can write it more clearly as
sum = foldr (+) ©
cat = foldr (++) ""

33

QUIZ

What does this evaluate to? *

foldr f b [] =b
foldr f b (x:xs) = f x (foldr f b xs)

quiz = foldr (:) [] [1,2,3]

(O (A) Type error
O (B)1,23]
O (©B21]
O (©) [BLI210]]

O (©) 111121131

http://tiny.cc/cse116-foldeval-ind

34

QUIZ

What does this evaluate to? *

foldr f b [] =b
foldr f b (x:xs) = f x (foldr f b xs)

quiz = foldr (:) [] [1,2,3]

(O (A) Type error
O (B)1,23]
O (©B21]
O (©) [BLI210]]

O (©) 111121131

http://tiny.cc/cse116-foldeval-grp

35

The “fold-right” pattern

foldr
foldr

foldr
==

\%4

\%4

\%4

b [] = b
f b (x:xs) = f x (foldr ¥ b xs)

(:) [1[1,2,3]

(:) 1 (foldr (:) []1 [2, 3])

(:) 1 ((:) 2 (foldr (:) [1 [3D))

(:) 1 ((:) 2 ((:) 3 (foldr (:) []1 [D))
(:) 1 (C:) 2 (C:) 3[D)

1 : (2 : (3 :0[D)

[1,2,3]

36

The “fold-right” pattern

foldr £ b [x1, x2, x3, x4]

x1 (foldr f b [x2, x3, x4])

x1 (f x2 (foldr f b [x3, x4]))

x1 (f x2 (f x3 (foldr £ b [x4])))

x1 (f x2 (f x3 (f x4 (foldr £ b []))))
x1 (f x2 (f x3 (f x4 b)))

| I | I | I | B
m - n nu
vV VvV V VvV Vv
-+ -h -h -h -

Accumulate the values from the right

For example:

-+
)
—
Q.
S

(+) @ [1, 2, 3, 4]

1 + (foldr (+) © [2, 3, 4])

(2 + (foldr (+) © [3, 4]))

(2 + (3 + (foldr (+) @ [4])))

(2 + (3 + (4 + (foldr (+) @ 1]))))
(2 + (3 + (4 +0)))

vV VvV V V Vv
N =

+ + + +

37

QUIZ

What is the most general type of foldr? *

foldr f b []
foldr f b (x:xs)

O (A)(@a->a->a)->a->[a] ->a
O (B)(@a>a->b)->a->[a]->b
O (©)(@a->b->a)->b->[a]->b
O (D)(@a->b->b)->b->[a]->b

(O (E)(b->a->b)->b->[a]->b

b
f x (foldr f b xs)

http://tiny.cc/cse116-foldtype-ind

38

QUIZ

What is the most general type of foldr? *

foldr f b []
foldr f b (x:xs)

O (A)(@a->a->a)->a->[a] ->a
O (B)(@a>a->b)->a->[a]->b
O (©)(@a->b->a)->b->[a]->b
O (D)(@a->b->b)->b->[a]->b

(O (E)(b->a->b)->b->[a]->b

b
f x (foldr f b xs)

http://tiny.cc/cse116-foldtype-grp

39

The “fold-right” pattern

Is foldr tail recursive?

Answer: No! It calls the binary operations on the results of the recursive call

40

What about tail-recursive versions?

Let’s write tail-recursive sum!

sumTR :: [Int] -> Int
sumTR = ...

41

What about tail-recursive versions?

Let’s write tail-recursive sum!

sumTR :: [Int] -> Int
sumTR xs = helper 0 xs
where
helper acc []
helper acc (x:xs)

acc
helper (acc + X) Xs

42

What about tail-recursive versions?

Lets run sumTR to see how it works

sumTR [1,2,3]

==> helper 0 [1,2,3]

==> helper 1 [2,3] -- 0+ 1 ==>1
==> helper 3 [3] -- 1+ 2 ==>3
==> helper 6 [] -- 3+ 3 ==>6
==> 6

Note: helper directly returns the result of recursive call!

43

What about tail-recursive versions?

Let’s write tail-recursive cat!

catTR :: [String] -> String
catTR = ...

44

What about tail-recursive versions?

Let’s write tail-recursive cat!

catTR :: [String] -> String
catTR xs = helper "" xs
where
helper acc []
helper acc (x:xs)

acc
helper (acc ++ X) Xs

45

What about tail-recursive versions?

Lets run catTR to see how it works

catTR ["carne"”, "asada", "torta"]
==> helper "" ["carne"”, "asada", "torta"]
==> helper "carne" ["asada", "torta"]
==> helper "carneasada" ["torta"]
==> helper "carneasadatorta” []

> "carneasadatorta”

Note: helper directly returns the result of recursive call!

Can you spot the pattern?

-- sumTR
foo xs
where
helper acc
helper acc

-- catTR
foo xs
where
helper acc
helper acc

pattern = ...

[]

(Xx:Xxs)

[]

(x:XxS)

helper

acc
helper

helper

acc
helper

0 Xs

(acc + x) xs
mi XS

(acc ++ x) Xs

47

The “fold-left” pattern

sum Xs = helper 0 xs cat xs = helper “” xs
where where
helper acc [] = acc helper acc [] = acc
helper acc (x:xs) = helper (acc + x) xs helper acc (x:xs) = helper (acc ++ x) Xs

foldl f b xs
where
helper acc []
helper acc (x:xs)

helper b xs

acc
helper (f acc x) xs

The foldl Pattern
General Pattern

e Use a helper function with an extra accumulator argument

e To compute new accumulator, combine current accumulator
with the head using some binary operation

48

The “fold-left” pattern

foldl f b xs
where

helper acc []
helper acc (x:Xxs)

Let’s refactor SUmTR and catTR:

foldl ...

SumTR

catTR

foldl ...

helper b xs

acc
helper (f acc x) Xxs

49

QUIZ

What does this evaluate to? *

foldl f b xs = helper b xs
where
acc

helper acc []

helper acc (x:xs)

quiz = foldl (:) [] [1,2,3]

(O (A) Type error
O ® 123
O ©B21
O (O [B1[21111]

O (&) [1[21131]

helper (f acc x) xs

http://tiny.cc/cse116-foldl-ind

50

QUIZ

What does this evaluate to? *

foldl f b xs = helper b xs
where
acc

helper acc []

helper (f acc x) xs

[=]
[=]

http://tiny.cc/cse116-foldl-grp

helper acc (x:xs)

quiz = foldl (:) [] [1,2,3]

[=]

O (A) Type error

O B)1,23]
O (©[321]
O () [131[21[1]]

O (&) [1[21131]

51

QUIZ

What does this evaluate to? *

foldl f b xs
where

helper acc []

helper acc (x:xs)

quiz = foldl (\xs x -> x :

(O (A) Type error
O ® 123
O (©B21]
O () [81i21011]

O () [1[21131]

helper b xs

acc
helper (f acc x) xs

xs) [] [1,2,3]

http://tiny.cc/cse116-foldl2-ind

52

QUIZ

What does this evaluate to? *

foldl f b xs
where

helper acc []

helper acc (x:xs)

quiz = foldl (\xs x -> x :

(O (A) Type error
O ® 123
O (©B21]
O () [81i21011]

O () [1[21131]

helper b xs

acc
helper (f acc x) xs

xs) [] [1,2,3]

http://tiny.cc/cse116-foldl2-grp

53

The “fold-left” pattern

foldl f b [Xx1, X2, X3, X4]
==> helper b [Xx1, X2, X3, X4]
==> helper (f b x1) [X2, X3, X4]
==> helper (f (f b x1) x2) [x3, x4]
==> helper (f (f (f b x1) x2) x3) [x4]
==> helper (f (f (f (f b x1) x2) x3) x4) []
==> (f (f (f (f b x1) x2) x3) x4)

Accumulate the values from the left

For example:

foldl (+) %) [1: 2, 3, 4:
==> helper 0 [1, 2, 3, 4]
==> helper (0 + 1) [2, 3, 4]
==> helper ((0 + 1) + 2) [3, 4]
==> helper (((© + 1) + 2) + 3) [4]
==> helper ((((9 + 1) + 2) + 3) + 4) []
==> ((((@ + 1) +2) +3) +4)

Left vs. Right

foldl £ b [x1, x2, x3] ==> f (f (f b x1) x2) x3 -- Left

foldr £ b [x1, x2, x3] ==> f x1 (f x2 (f x3 b)) -- Right

For example:

foldl (+) ©

foldr (+) ©

Different types!

foldl

foldr ::

:: (b

(a

[1, 2, 3] ==> ((©0 + 1) + 2)

[1, 2, 3] ==> 1+ (2 + (3 +

->a ->b) ->b ->[a] -> b

->b ->b) ->b ->[a] -> b

+ 3 -- Left

©)) -- Right

-- Left

-- Right

95

Useful HOF: flip

-- you can write
foldl (\xs x -> x : xs) [] [1,2,3]

-- more concisely L1ike so:
foldl (flip (:)) [1 [1,2,3]
What is the type of £1ip?

flip :: (a ->b ->¢c) ->b ->a ->c

56

Useful HOF: compose

-- you can write
map (\x -> f (g x)) ys

-- more concisely Like so:

map (f . g) ys
What is the type of (.)?

(.) :: (b ->¢c) ->(a->b) ->a ->c

o7

Higher Order Functions

Iteration patterns over collections:

o Filter values in a collection given a predicate

e Map (iterate) a given transformation over a collection

e Fold (reduce) a collection into a value, given a binary
operation to combine results

Useful helper HOFs:

e Flip the order of function’s (first two) arguments
e Compose two functions

58

Higher Order Functions

HOFs can be put into libraries to enable modularity

« Library implements map, filter, fold for its collections

o efficient implementation
o optimizations:

o map £ (map g xs) --> map (f.g) xs
e Clients use HOFs with specific operations

> no need to know the implementation of the collection

Enabled the “big data” revolution e.g. MapReduce, Spark

59

That’s all folks!

60

